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Preface

This report is the transcription of the talk by Dr. Guy L. Steele Jr. at the LS-JP sym-
posium on July 10th, 1995. The work was arranged by Masayuki Ida and the transcription
was done by himself mostly. The LS-JP board asked Masayuki Ida to publish the record as
a CSRL technical report, and he have made it for the LS-JP. v

We like to express our gratitude to the LS-JP board members who have volunteered with
‘us to make this event successful. Especialy, we like to note the works by Mamoru Sato,
Takumi Doi, Takashi Kosaka were outstanding.

Masayuki Ida
December, 20th, 1995

— No Mzigration but Co-existence —

Copyright (C) 1995, Guy L. Steele, and Masayuki Ida
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Chapter 1

Introduction

1.1 The LS-JP July meeting

The Lisp Society Japan (chairman: Masayuki Ida) have annual event series for the members.
In '95 we started the series by having talks around Lisp. As the first event, the LS-JP was
fortunate to have a talk by Guy L. Steele Jr while he was visiting Japan to be a guest
speaker at SPARC UNIX conference at Makuhari. Since Guy L Steele is also famous as a
co-designer of Scheme, the LS-JP asked him to talk about the origin, basic concepts behind
Scheme design and his view on its history. He titled the talk as “Scheme: Past, Present,
and Future”. The talk was held at Aoyama Gakuin, Aogaku-Kaikan on July 10th, 1995. Th
summer in Japan of the year was exceptionally hot, while the room was well air conditioned.

Chapter 2 is the transciption of his talk. He had used 26 slides on the subject. Opening

messages by Guy Steele is included in this section.

1.2 Introduction of the speaker

Before starting the talk, the coordinator introduced the bibliography of Guy Steele Jr. using

the full resume of him typed in more than 20 sheets. Here is a very short version of it.

Guy L. Steele Jr. is a Distinguished Engineer at Sun Microsystems, Inc. He received his A.B.
in applied mathematics from Harvard College (1975), and his S.M. and Ph.D. in computer science
and artificial intelligence from M.I.T. (1977 and 1980). He has also been an assistant professor of
computer science at Carnegie-Mellon University; a member of technical staff at Tartan Laboratories
in Pittsburgh, Pennsylvania; and a senior scientist at Thinking Machines Corporation. He joined
Sun Microsystems in 1994.

He is author or co-author of four books: Common Lisp: The Language (Digital Press); C: A
Reference Manual (Prentice-Hall); The Hacker's Dictionary (Harper&Row), which has been revised
as The New Hacker’s Dictionary, edited by Eric Raymond with introduction and illustrations by
Guy Steele (MIT Press); and The High Performance Fortran Handbook (MIT Press).
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Chapter 1. Introduction

He has published more than two dozen papers on the subject of the Lisp language and Lisp
implementation, including a series with Gerald Jay Sussman that defined the Scheme dialect of
Lisp. One of these, “Multiprocessing Compactifying Garbage Collection,” won first place in the
ACM 1975 George E. Forsythe Student Paper Competition. Other papers published in CACM are
“Design of a LISP-Based Microprocessor” with Gerald Jay Sussman (November 1980) and “Data
Parallel Algorithms” with W. Daniel Hillis (December 1986). He has also published papers on
other subjects, including compilers, parallel processing, and constraint languages. One song he
composed has been published in CACM (“The Telnet Song”, April 1984).

The Association for Computing Machinery awarded him the 1988 Grace Murray Hopper Award
and named him an ACM Fellow in 1994. He was elected a Fellow of the American Association for
Artificial Intelligence in 1990. He led the team that received a 1990 Gordon Bell Prize honorable
mention for achieving the fastest speed to that date for a production application: 14.182 Gigaflops.

He has served on accredited standards committees X3J11 (C language) and X3J3 (Fortran) and
is currently chairman of X3J13 (Common Lisp). He was also a member of the IEEE committee
that produced the IEEE Standard for the Scheme Programming Language, IEEE Std 1178-1990.
He represents Sun Microsystems in the High Performance Fortran Forum, which produced the
High Performance Fortran specification in May, 1993.

He has served on Ph.D. thesis committees for seven students. He has served as program chair
for the 1984 ACM Lisp Conference and for the 15th ACM POPL conference (1988); he also served
on program committees for 30 other conferences. He served a five-year term on the ACM Turing
Award committee, chairing it in 1990. He served a five-year term on the ACM Grace Murray
Hopper Award committee, chairing it in 1992.

He has had chess problems published in Chess Life and Review and is a Life Member of the
United States Chess Federation. He has sung in the bass section of the MIT Choral Society (John
Oliver, conductor) and the Masterworks Chorale (Allen Lannom, conductor) as well as in choruses
with the Pittsburgh Symphony Orchestra at Great Woods (Michael Tilson Thomas, conductor)
and with the Boston Concert Opera (David Stockton, conductor). He has played the role of Lun
Tha in The King and I and the title role in Li’l Abner. He designed the original EMACS command
set and was the first person to port TEX.

At Sun Microsystems he is responsible for research in parallel algorithms, implementation strate-

gies, and architectural and software support.
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1.3 Opening

( ™
Scheme
Past, Present, and Future

Guy L. Steele Jr.
Sun Microsystems laboratories

N J

KONNICHIWA. Thank you for inviting me to speak here to the Lisp society of Japan.
Today, I would like to talk to you about the beginnings of the Scheme language and to

discuss its history from the very beginning and before the beginning, until today. And, we
will discuss little bit about the future. Perhaps some of you know Common Lisp. Common
Lisp is a very big language, and a very complicated language, and Scheme is very small. I
hope that during my talk today you will come to understand why Scheme is small and, I
think, more elegant than Common Lisp. There are some good reasons.

SAUTHIL, LISP HERICBIRE VAW TH )AL Y TEVET, 4 Hi. Scheme SHEMDIL
CENIZDWTHBHLLET, $72, 22 LOEROVESORLE5HIINT 25 T TORES 2355
LET, SRICDVTHWL DR ET, BF5 <. Common Lisp D &2 THMLE Hb V5o
LA TL X 9. Common Lisp It RZEA X <KL SETT. —7F Scheme BRENENWTT, 4
HOEEZFT, %24 Scheme AVN XV D2, 724 Common Lisp KD VLAY FEERDSEZ T
B, AREADEHELCHI T AEERMEL T+, vl DOODYELBERLGH L DTT,
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Chapter 2

Scheme: Past, Present and Future

2.1 How Did Scheme Begin ? (Slide 1)

4 ™
How Did Scheme Begin ?

o Carl Hewitt and Gerald Jay Sussman had an argument...
e Artificial Intelligence languages

— Planner (theorem proving)

— Muddle (implementation language)
— Microplanner (small theorem prover)
— Conniver (hairy control structure)

— PLASMA (actors model)

First let us discuss how the Scheme began. I wish I could tell you that it was a carefully
designed language and it was the result of careful research and understanding of what a
programming language should be. Perhaps that is not a true story at all.

The language began because two very brilliant persons at MIT were having a big argument.
This started slightly before I came to MIT as a student. This discussion was between Prof.
Carl Hewitt, and a new student to MIT, Gerry Sussman. Carl Hewitt was at the artificial
intelligence labratory at MIT and was interested in designing programming language for
robots. At that time, in the mid-1960s, it seemed to be important that robots be able to

5



6 CHAPTER 2. SCHEME: PAST, PRESENT AND FUTURE

prove theorems about what they ought to do. In particular, it was important that a robot
could plan what action to take before actually doing the action. So Carl Hewitt designed a
programming language called Planner, that was intended to help programmers or robots to
do theorem proving. The idea was that the programmer could write down the rules, and the
programming language Planner would automatically deduce the theorem from the rules. So
Planner was perhaps one of the first rule-based programming languages.

Gerry Sussman arrived at MIT and became a part of the project to implement Planner.
Carl Hewitt never designed simple languages, and Planner was a very complicated language.
So they decided first to design a simple programming language called Muddle, and then
they used Muddle to implement Planner. Carl Hewitt helped to design Muddle and Gerry
Sussman helped to implement Muddle, then tried to implement Planner. This was still too
difficult and the full Planner language was never really implemented. However, Muddle was
fully implemented and used in other research projects. And some features of Common Lisp,
in particular argument lists with &optional &rest &keyword and other keywords, came
directly from Muddle.

In the meantime, it seemed important to have some programming language for robots,
so another project was started for a small-version of Planner, called Microplanner. Instead
of being implimented in Muddle, this i1s implemented in MacLisp, which was one of the
predecessors of Common Lisp. This Microplanner was a reasonable success, and several
artificial intelligence projects at MIT were programmed in Microplanner. Perhaps the most
famous such project was SHRDLU, automatic movement of blocks in a “blocks world,”
which was done by Terry Winograd.

After some experiences with Microplanner, Gerry Sussman and another student, Drew
McDermott, were not satisfied; it was still too hard to write programs. So they decided to
invent yet another programming language. They called this programming language Con-
niver.

The difference between Microplanner and Conniver was that in Microplanner theorem
proving was automatic and control structure was automatic. As Microplanner used the rules
to prove a theorem, it would try one thing and then another with automatic backtracking.
Sometimes the automatic back tracking was very inefficient. In the Conniver programming
language, Sussman and McDermott wanted to let the programmer have more control over
the backtracking or to do something other than backtracking.

So we see a sort of progression. This argument between Carl Hewitt and Gerry Sussman
was really arguing about the best way to write programs for robots and the best way to
program for artificial intelligence. But instead of fighting with each other, what they did
was to design programming languages.

Each one said, “My language is better than your language!”
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Conniver was not the last word. Carl Hewitt designed another language called Plasma.
Plasma was better than Conniver. (I should note that there is a famous confarence paper
that was written by McDermott and Sussman. The title was “Why Conniving Is Better
than Planning.”) Plasma was different from the earlier languages because it was based on
Carl Hewitt’s new idea of an actors model. So, to understand Scheme, it is important first
to understand Carl Hewitt’s actor model.

3

TF, EDL LT Scheme BIELF 57202 DVTHBEE L F T, Scheme 1T AZIEEIE B
FPENLEETHo T, 7077 IVTEREDD ) FIZOWTOFRS2IFE & B D\ 2 b D
THoltEZXNTRP o7 INTRA, L L, BEIIEATAENTT,

COEEIE. MIT DT ADIEHZ AL Tniz, KEZRFIIILED 9, 2, ZAs
MIT 1AL LTRLD Lo EFHDI ETLz. ZOMF LI DI, Carl Hewitt S5k & . FH L <
FHE & LTA 272 Gerry Sussman DIZBE o72% DTE, Carl Hewitt 13, MIT O A T4NEEHIZE
%KWT\Uﬁyk®tb®§%@&Esn%%%OTWiLﬁwmﬁﬁ@$iTi =R
HATRINREZE OV TEREHTE 20 L) PFEED L 5 TL A, o, IRy M ASEAR
RITEIZ $HRANEDITERIOT T v A TE LM EIPPEET L2, 2T Carl Hewitt 12 Planner
EVITUT T IVTEHEERERGILE L. UL, Tur S u Ry FASERIEHE T A D%
W B7:0DbDTLIz2, TATTEWIDIE, 70750 — b xEXH L, Planner SENH
BRIV — VO BB ERET A L W) DD T Lz, 5T, Planner 3B Z5 CEDIL — L ~—
ADTTT 5 I VT EET L,

Gerry Sussman {3 MIT 12T, Planner PERETETOV LI MDA UN=IZEYFE LT, Carl
Hewitt i3, B EELREITAHE VI LR LTH Y FHATLEDT, Planner BN L

TEETLIZ, £ZTHLITET, Muddle EMERY VT VAT OS5 I V7 EEOREDLIT LD

BEIZLE L/, ZLT. Muddle #ffi 5T, Planner #/F L L D & L72DOTH, Carl Hewitt li
Muddle Dt Z 52T £F5H . Gerry Sussman 13 Muddle DEE%S 517 b 5. % LT Planner DESE
Lloth@f?o;n%&b l%&ﬁ%f\méﬁpmma;‘1owK£ﬁéni@AfL
2o LU, Muddle I35E2IMES R, OBET BV 27 b THWHNRE L7z, Common Lisp O
e b, 518 A b 0) &optlonal grest. &keyword T DD F— 17— F 7 Li31E#E Muddle
iR g T\/‘i@ko

=B Ry FDORDDLEALHIOTVT T IV T EEDSLEE Y, Planner O/NEIRT . Mi-
croplanner 2 HHDT UV FPANILF Y T L7z, FHIE, Muddle TEHETLb DIz,
Common Lisp DF{HD—2T#H 5 MacLisp TfESNF L7z, D Microplanner i3 $ 3% F 0
ZBIO, MIT DATHRET U D27 OV DR INTEPNE L), BZ5L L, 200 TR
éﬁ%&7U/lﬁbi\ﬂmywm%mdmléF%&*@ﬁﬁjfﬁ&*%ﬁﬁismnmUﬁ
Lide

Microplanner Z#X58 L7228 & . Gerry Sussman & b 9 — AD%4E Drew McDermott 13 #2155
RLERATLY, U T LTHDODHE Loz bTY, SRRSO TOrs I v rs
PR T A L RPLL L E L7z, FRIE. Conniver TN FE L7,

Microplanner & Conniver D D;EV:I, Microplanner TIEHETH b IHLED +— <7 4y
7 T o722 L TF, Microplanner I3FEHFHZTHDIZN— NV E2fioTHWE LEOT, HESY
JEIvITRALTFAMELTCVEE LT, LEALE SOHENY 7 T v 2 I3FEIERN T,
Conniver F75Tid, Sussman & McDermott i3, 707 5B DNV 7 T 9 7% o LHET
EHLIT, BOEINL, Nv s Ty s UMOMALTERLIICLEIELE LT,

ZI T, HLHEDMELD B 572D T, Carl Hewitt & Gerry Sussman DR D#EZ T, TUEY b %
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T IATEEDBVWHE, FLT, ALTHRZ 7O IATAROBVWHELIELTTH 72
DTT, LHL, EVWICEIDOTIEIR L, o2 L3> THOEEDREI% L2 TT, [HD
SEOHFHFEBEOLI N E ] EEWIZEWE 272D T,

Conniver TN Tlidb h FHATL7:, Carl Hewitt iE. Plasma E\WIHIZOSERPRET LT L7
Plasma 1%, Conniver X ) ED 272D TF, (22T, McDermott & Sussman 12 & o TEPNIGH
UL EEEHLTBET Y, #O% 14 Vit | %24 Conniver 1Z Planner X ) EVvoddr] T
F.) Plasma (X, 727 FEF N LV Carl Hewitt DFT LT AT TIZED TV T, LIEio
SiELIIEL o TWALDTL ., 7286, Scheme Z¥fFETHDIZIZ, 9 Carl Hewitt D7 7 ¥
ETNERRTHLENDY 7,
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2.2 What Is an Actor ? (Slide 2)

4 ™
What Is an Actor ?

¢ Inspired by Simula-67 and Smalltalk

e An actor is an object

An actor can send and receive messages

An actor knows certain other actors

Try to explain all computation this way

What is an actor? The idea was inspired by the programming languages Simula 67 and
smalltalk. Actors are very much like objects. I will explain it to you, but not quite in the
same words that Carl Hewitt used.

An Actor is an object. An actor can send and receive messages. Also, an actor knows

certain other actors—we would say it has pointers to other actors.

Carl Hewitt tried to explain all kinds of computation in terms of actors. Today we
would say that Plasma was a strictly object-oriented language. But at that time the term
“object-oriented language” was not common. People were still struggling to understand
the language. Carl Hewitt’s particular contribution was that he thought the English word
“object” means something that sits there and does nothing. “Actor” means something that
does something-—it is an agent. In fact, I was strongly surprised that the word “agent” was
not used instead of “actor”—in the Latin language, “actor” and “agent” are from the same

verb.

705 LM ZDT AT T, SIMULAGT & Smalltalk It v F 2B TWES, T2 41k, o+
TV DL REDTT, INLOFME LT, ROSVHIE Carl Hewitt A9d o 7- =85 &
BE{FHLLTiEHY FEA,

TI2IEAT T2 T TOIE A —VRBETTEIT, T2 7MDT & ¥ % 5o T
T9, bIPLEZITMDOT 7 5 ~DOEAL v ¥ % EFoT VT4,
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Carl Hewitt 12, I XRCO5TEZ T 77 2o CHBLEL Y E LT L7z, 4 H. Plasma lZ$ o7
{F TVl MEIAISECTH o7 \V) ZENTEXET, LL, HOFRLTIE, 7 V27 MM

SEEVISERHINVEDRTVIEAT L, FRT, COSHELHEBTIOILLITVTVE
L72s Carl Hewitt D RELZEBNI. HZ (A7 V22 ] LWISENFINFNEHFML LS, #
CEHHrb0L L. [Ty ] BUrETAAPE LTRAZIETY, FhiE, -V FTT,
BE MR T 7 TRELL =Tz P W) BEMbN o2 LICKEEESI L, 7

VEETIY, Ty EI—V v MEIFE—OEEN SR THE T,
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2.3 Actor Example (Slide 3)

4 ™

Actor Example

® “lis an actor. If you send it the message '+ 2 ¢’ then eventually the actor ¢’ is sent
the message '3".”

So, let’s look at the examples of Actor computation. To Carl Hewitt, a number, such as
1 or 2, 1s an actor.

In an odrinary programming language, you might say we give 1 and 2 to the addition
function; the addition function returns the number 3. But Hewitt suggested an different
explanation as well. The number 1 is an actor. If you send a message to number 1, it
takes a continuation c. In particular, if you send, to the number 1, a message (plus 2 c),
then eventually the actor c gets 3 as a message. At that time, about in 1974, it was a very
strange kind of computation style. Gerry Sussman and I-—I had arrived at MIT as a student

at about that time—found it very difficult to understand.

T IRBEDOBEATHEL & Ho Carl Hewitt 122 2T, 1202 Vol VI DI T
7T,

EBOT T T IVTEETIE, 1 258 MEIES EEZBTLE ) FLT. MEMEEA3
ERLET. LU Hewitt 1B o72E 2 h% LELS, 1Id—207 2825 LEd, bL. 117
Ave—VeEbL, AVFAZaT—Tar c #BET, BT, 1ICAYE—T (+ 2 ¢) B3ED
ELBHINIT 28 c 3 Ay —VE LT3R 3. 7 44EHDOEAT, ZUdEEics
W Z T L7z, Gerry Sussman &, £0D 5 MIT 12584 & LT A - 728012 1E . FARIC TREEZ b
DTL7z,
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2.4 Conses as Actors (Slide 4)

4 N\

Conses as Actors

e A cons cell is an actor that knows about two other actors a and d.
o If you send it the message 'car ¢’ then actor ¢ receives the message '«
o If you send it the message 'cdr ¢’ then actor ¢ receives the message 'd'.

o If you send it the message ’atom? ¢’ then actor ¢ receives the message ’false’.

Let me show you another example of an actor. Suppose we think of a Lisp cons cell as an
actor. I will draw a picture. A cons cell is an actor that knows two other actors.

Usually we call the other two actors A and D, or the car and the cdr. If we send the
message (car C) to this cons cell, then eventually actor C receives A as a message. So, we
can ask a cons actor “what is your car?” and it will hand it back to you as a message.
Actually 1t doesn’t really hand the actor A back to us; it hands it to the actor C. Nowadays
we called the actor C a “continuation” but at that time the term was not used. Another
message you can send to a cons cell is (cdr C); then eventually actor C receives message
D. Another kind of message you might send to this cons cell is (atom? C) in which case C
receives the message false, that is, “I am not an atom.”

To Lisp programmers in 1974, this was an extremely strange concept. Everyone knew
that a cons cell was just 36 bits of memory: 18 bits for the car and 18 bits for the cdr.
Anyone could look at the car and the cdr, and anyone could replace them by using rplaca
and rplacd.

Carl Hewitt said, “No, a cons cell is not an object. It is an actor. You must say, ‘please

replace your car with the object I give to you. Thank you.’ ”

T7IDNOEEBRELEIL L D, Lisp DIV ALMRET 2473 LET, MTRELELLD
(MxFEL ) AVAENIE, 20057 25 2H->THWAET 25T,
EH, 202007752 a & DdHhAWicar Ledr EMNUTFS, BL, ‘carc DAV E—T%k
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To FECD, D car R cdr EDEFVTHD I EMTE, rplaca ® rplacd TEEHZ 5 2 L ASTX
ESc
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2.5 PLASMA: An Actor Language (Slide 5)

e N
PLASMA: An Actor Language

e Supported actors

e Very complicated language

e Sussman and Steele could not understand

e They decided to write an interpreter for a small actor language

— Not many features

— No complicated syntax — write it in Lisp

So, Hewitt designed Plasma, which was an actor language. Everything in this language
was an actor. It was a very complicated language and it had a very complicated syntax.
Sussman and I could not understood how it worked.

There was an implementation of Plasma in MacLisp. We could try it, and we tried to
write Plasma programs. It worked and we could not understand why!

So, Sussman and I educated ourselves to try to understand how it worked. Sussman and
[ tried to write a small interpreter. The easiest way to understand the language is to write
an interpreter. And the best language for writing interpreters is Lisp.

So, we decided to write very small version of Plasma. We were not trying to design next
Al language, but wanted to understand Plasma without any unnecessary features. it was
small language. Because we wrote the interpreter in Lisp, the toy language naturally had

Lisp syntax. We did not have the complicated syntax of Plasma. just a simple Lisp syntax.

Hewitt 1¥, 727 ¥ S7& Plasma 25t LE L7z COFHEOFDOITRTOLDIZT 75 TY. &
., KREEMESET, KEERE L UE2HEH > T 9, Sussman EFIE, FNE I OR
}Eﬁf% FHAT Lf:o ]

MacLisp TE272 Plasma OMLIERDH Y F L7z, #NaHl T LA TEE L7z, £72, Plasma
TFUTFL%EVCRT Lz, ZREIEIELE LAY, 2, B OB TEETATL!
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Sussman ERUIZENDEIFI OPHBEL L )& LE L7, Sussman EHIE, IXB A2 5T )]
SEFEZI L, SHEPEBTAIRDEHE LTI ZOA V8T )2 EL L TF, A2 5T
5 eE RS BWEREIR Lisp TY,

TIT, FA L Plasma DRZIPELN=T 3 v FELZEIILE L7z, ROA T SBR B L X
PEVIRIIBH Y FHATL R, 2 TIRE L, RELHEEEE VT Plasma 2FMLE S & L7
DT, TIUINELFHETLIZ, EDA Y57 513 Lisp TEVEOT, 20Bb b + D=L
lisp fE3CE o T E L72e Plasma DHAELIE R H DD T % | L Lisp 37470
T3,
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2.6 The Toy Actor Language (Slide 6)

4 ™
The Toy Actor Language

e Start with a small Lisp interpreter
e Use lexical scoping

— Seemed to be necessary for actors

— Sussman had been studying ALGOL 60
e Add a way to create actors (alpha)
¢ Add a way to ssend messages to actors

— At first we had a send special form

— Then we realized application could distinguish actors from functions and do the
right thing

Here is how we wrote the toy actor language. We started by writing a very small Lisp
interpreter, which was about two pages long.

We made one unusual change from the Lisp 1.5 manual. The unusual change was to use
lexical scoping instead of the dynamic scoping that was usual at that time. We use lexical
scoping for two reasons. First, it looked as if actors would need lexical scoping—that was
from our study of the Plasma language. Second, the other reason was that Sussman was
teaching Algol 60 at that time and he was interested in lexical scoping. He thought it would
be fun to make a language with lexical scoping like algol. This was the direct influence of
the design of Algol on Scheme.

We started to write a lexically scoped Lisp. There were two more things to add. One
was a way to create actors; the other was message sending. To create actors, we added a
kind of expression, the alpha expression, which was just like a lambda expression. An alpha
expression just started with the word alpha, which is a Greek letter; and then variable

names, that represented the elements of messages sent to the actor; And then there was a
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body, which was code to be executed when a message was received.

As nearly as we could understand from what Carl Hewitt said, the difference between an
actor and a function was that an actor does not return a value. Instead, the body must
somehow send the value to other actors. Usually the actor you send something to is in the
original message as a continuation. _

We chose the letter alpha, because that is the first letter of the Greek word for “actor.”
So evaluating an expression like this produces, as its Lisp value, an actor. This Alpha
expression produces an actor; the Lisp value of the expression is an actor. So that is the
way we created actors. To send messages—1I asked Sussman about this. I cannot remember
and he cannot remember it. But I think we had a special form send. But then we realized
that the function-application syntax could also be the send-message syntax because if the
first thing is a function, it must be a function call, and if the first thing is an actor, it must
be a message send. Anyway, in the example I will show you, I will use send because it is
easier to see what is happening.

So, the way to send a message to an actor is to write send, the actor, and then the
arguments.

So, it was very small simple language which is just enough to create actors and send
messages. And we could experiment with using all functions, or all actors, or combinations

of them. Here is sample code in a very early implementation of Scheme.

EIRo>T, ZDBLLxDT 7Y SiEHECOPBELI LI, 7., 2/— U< HLDE
SORENEVLisp A 8T VI RELIEPLIEDT LT,

1D72F Lispl b R =a T AR SERELEH A LE Lz, 20U, ZDTAHE BTN
4%&y&x:~5y7®ﬁbbKv#vﬁwz:~67¢%mw5:&fttoZowﬂm?v#
YANAT=T 2 LE L7z, £3. Plasma SEZF~IHER. T2V LEFLANRI—V L7 A8
VA LIS/ L, b5 1D, Sussman ITFDE, Algol60 ZH X TWT, LF I ANAT—
Eyﬁmm%%%ofmt:k#%fﬁoﬁuAgdwi5&b#>ﬁwx:~8>7%%o§%
EHZ LIEBHLAZILEELDTT, N9, Scheme 12 Algol DFEETAS AT L 72 EHIED R
T3,

RBEELIZ200ZEEMAT, LIV ANAT—E U7 D Lisp DREEZFIEDE L7, —Dld.
778 DERFR, b ) —DE Ay b= VRETT, 7275 DERDIHIZIL, alpha 2% HEL T
LtoCh@?AVﬁK@TWi?O7W77ﬁM\%WK?U?VX?KE%LTMﬁm%ﬁé\
%K%@77yu%enéxyk~9@£%%§¢%ﬁ%%ﬁ&i#o%@%tm\th~9%§
THONFCET SN A FThHLRT 422X $ 4,

Carl Hewitt 2%\ o TW A Z L DS FLENS TR TEX /202, T 4 & B oI, 727 7 i3E%
MEBLWEN)ZETLZ, 20D YNITET A IHT LD HETIER DT 2 ¥ WD ET. W
@\W#%%ofwéﬁ%@777ﬁ\ﬁ@ﬂvk~?®¢ﬁ\:V%4:11~yaykLTﬁE
LET,

ﬂ%@\MMa&W5§%%EUiLﬁOkwwﬁ\%ﬂﬁ777EW5¥U?%%@%m@ii
RO TE, 0L ) LROFFEIL, Lisp DIEELCTT 275 K LES, COTALT 70137 ¥
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YRERTAEDTT, 02X, ZOXD Lisp & LTHEIXT 7 ¥ TT. FNDTIENT 7 ¥ A
FTHAELETHY T LI, AvE—TU%ELHHICDOWT Sussman I2HRAF L7z, RIFEZTWEY
hoo FLTIHEDEZTWERA, LoL, #ZEldsend LW IHIHHER 2 o T2 X HICEVWET,
L L, BoERof T, $/2. Ave—VUREOEXERNIbE, 20BN E LI, L
ADE. b L. BICEEDSH O SPBIFHE LIZRA L, RINCT 72 IVBBLDRE Ay —
VHEEILLRLEAIENIT ETT,

FOIICAY =Tk %EAIZIL, send. FDOT VY, FLTFDFHEVIHIEIZEE T T,
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THYHOLWAHEM., 7274, FLTENLOMAELETA L TALIEINTEXE L7, Scheme D
T R OB R TOYF IV a—FERLEL LI,
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2.7 Functions and Actors (Slide 7)

4 N

Functions and Actors

e Factroial function:

(define factorial
(lambda (n)
(if (= n 0)
1
(* n (factorial (- n 1))))))

o Factorial actor:

(define actorial
(alpha (n c)
(if (= n 0)
(send c 1)
(send actorial (- n 1)
(alpha (z) (send ¢ (* n 2)))))))

Here is the factorial function, which is seen in many Lisp tutorials.

Factorial is defined as a lambda expression, which creates a function.

This function takes one argument n and if it is zero, it then returns 1 as the value.
Otherwise, it makes a recursive call with the value n-1, multiplies the result by n and
returns that. Compare this definition and the actor version; I call it-—this is a joke in
English—actorial.

Actorial is defined as an alpha expression that creates an actor. It is not supposed to
return a value. Instead, the value C is a continuation to which to send the value.

Let us look at actorial. Actorial receives two arguments, n and <. If n is zero, we send
the value 1 to c. Otherwise we send to actorial the value n-1 and a new continuation.

The new continuation is itself an actor, which receives z, and it will multiply n and z and
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send the result to c. So, eventually, c is sent the correct value.

Actually this definition of actorial is not a pure actor. This is a kind of mixed notation,
because actorial is an actor but the equals sign = and minus - and multiplication * are
functions.

Suppose that equals sign, minus, and multiplication were actors; then the code would be

pure actors. Then on the next slide, actorial would look like this.

ZhiZ, Lisp DEFEEICH B T BFEFE (factorial) D7 TS 7 AT, factorial id, %
LTI LA CTERSNTVET, TOBMIT. —57. nZHY), bLENFEO L1 2fEE L
TEL, F)TRIFIEL, fHn-1 THREFCHLEL, 2OMHEE n 22T, HREZELET, ZO%E
LTV IMELRTT IV, 77 IMRIE, FEEDY 3 — 2 Tactorial LWV HIZIZLTWET,

actorial 137 7 # ZAEWT AT V7 7 AN TERSINTVE T, HEET LI ICIIEZ SN TVEY
ho ZOPDYIZ, fHcld, BEFIIELIAVF 4 a2z —2 3 v TT,

actorial # A THFEL & 9, actorial iZ. 251 n & c 2T 9, b L., n BT L O{E
12 clBLNFET, Z2HTRIFNE, 220DfE, n-1 FHLWVI YT 4221~ 3 % actorial
12D 9,

COHFLVIVF A aT—YaVIENRERT I TT. FhUE, 2z 2ZHY ., n &z 2T,
CIHEREED FT, Lo T, BB cZELWEIZEY P ENE T,

ERRIZIL, actorial DT DEFRIIFMKLRT 7 ¥ TlEH D FHA, TNIEFIANRL o750 FETT, &
WD, actorial X7 7 7T NE, FF v AT RALFEEIIEBIE,LL T,

GHEYAFREFEREET 75 5hE, 2AIHRRT 2 5ER) EY, RDATAF TEh%E
BRELELL I,
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2.8 Detailed Factorial Actor (Slide 8)

4 ™
Detailed Factorial Actor

(define actorial
(alpha (n ¢)
(send = n 0
(alpha (p)
(if p
(send ¢ 1)
(send - n 1
(alpha (m)
(send actorial m
(alpha (z)
(send * n z ¢)))))N)))

This is the most complicated slide in this talk. If you understand this, the rest is easy.

Okay, so let’s try this. It’s a little complicated: actorial receives the message with two
things, x and c. It then sends three things to to the equals-sign = actor: the value n, the
value 0, and the continuation. Eventually, the continuation receives the value p- If the value
is true, then it sends the value 1 to c. If p is false, then sends three values to minus-sign -.
The values are n and 1 and another continuation.

Eventually, this minus sign sends the value to the continuation. This new value should
be equal to n-1. This is called m. This new value m is sent to actorial with a third
continuation. The value that actorial computes is called z. This continuation finally sends
to the multiplication actor * three values. The three values are n, z, and the continuation,
which is the original continuation c. Eventually multiplication sends the product to c.

That is exactly what we want. If you look at it carefully, it is the same computation. Now
you can understand why we found it difficult to understand!

A Plasma program might look like this, but would have more complicated syntax.

The Plasma program is twice as long as the Lisp program. And 10 times as difficult to

understand.
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Gerry Sussman and I were very pleased to have a small interpreter of a simple language
with simple syntax. We wrote many programs in the small language. We took many

examples from Carl Hewitt’s papers and ran them on our interpreter.

CDAGAFHPROFEDOTTHROIEMRDDOTT, HLIIFHICEY T,
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I—3ayTY, LT, #0AyF4=aT—>a i, Bp 2B 4, d L. ZOESE
ThHUT, H1ZclZEDET, L. pWBLELIE, 3ODEETAFRIZEY T3, fHIZ, n &
1y H)—onaryyr4=ar—arTi,

ZORAFAE, R IVTF A 2T —2a v ilEDET, ZOHFLWHEIL, n-1 EEHELWDIOT
T, ShEm TR T T, TOFH LVWEMIE, actorial ICE=DA VT 4 aL—a vy iT%
SNFT, actorial PEMETAHIZ z EHINTE T, ZavFrmax—TaiE, F0O%, EH
FIHIC3ODME. na b TADIA YT 4 mal—Yave, BEDFT, RICELEIFORE ¢
Ik 9, :

FRAS, BADPIZLWHDTT, L, TOFEBAEZERRAT N, STHIEFR—DFE
TOWhPAETLL ), e, BADVPEMIHELZ LR L2 ERLTOILRELHVET,

Plasma 707 5 A3, THIPTWETH, b o LEMLRELrF>TWZE L7z, Plasma 7' U
75 A, Lisp ICHART2/FIEEL, 1 0f53HEE T 500WETL,

Gerry Sussman L FAZ Y VT NBRELD Y YT NVEEFED, NS A VT VI BPKRGFETL
BUNNDT, CONSHEETILEADTUT T u%EX T L7, Carl Hewitt Dig XA 5672 &

ADFZBEIWTE T, TNEFFOA V¥ TNVITELE T LI
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2.9 The Next AI Language 7 (Slide 9)

4 ™
The Next AI Language ?

e Comes after Planner, Conniver, ...

Let’s call it “Schemer™!

But 1960’s-design operating system allowed names only up to 6 characters

So the file name was “Scheme” — and that became the popular name

e J

We began to be very excited, because we thought it might be a good language for Al
This would not be the first time that Carl designed a complicated language and then Gerry
implemented a version we could understasnd and use! Carl Hewitt designed Planner, which
was too complicated a language to use, and then Gerry Sussman designed MicroPlanner and
people could use it. We thought this was the same story. Carl designed the complicated
Plasma language and Gerry Sussman (and I) designed Scheme. We thought this was a
simple Lisp version to use. We were not trying to make a new Al language. We thought we
were making a simple language, trying to understand it. It was an accident.

But if this language could be the next Al language after Conniver and Plasma, it would
need a good Al language name. Planner, in English, means something that plans. A
conniver is a sneaky planner. So, what we called it was a very sneaky planner. That is a
schemer. We called it “Schemer.”

Unfortunately, we had used an operating system designed in the 1960s. Every file name
had to be 6 character or less. So, the file name SCHEMER was truncated to the first 6
characters and the file name SCHEME became the popular name. The whole language was
designed by accident and the name was an accident. ‘Many people think we did a wonderful
job. I don’t understand why!

SN ATHBICEWSED LN W 5hoTE T, FERZATZZABEL T LI,
Carl Hewitt 2B Sl % %A1 L. Gerry DSHOEATEMR LAF 2 2 b DEFEHLTINDEENWID
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EE—DA =)= BnwE L7,
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L7z SHUIERZ AT 7 W Lisp ZEBWE L7z, FOZEIL, il AISHEEZEA I ELTWA
DTIIEY FTHATL . MBZEDEVNHMTCEL L )RV VTNV RSB B E- 70T,
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< — (PaifzE., FWEER) 72, FNT, Schemer & DI 72D T,
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TTRIFEE Y FRHATL, FNT, 7 7 4 )V4 SCHEMER 3D 6 L7280 iEToHh
F L7z, ZOME, SCHEME LW ) 7 7 A VEDPKRE 2 T — AL 2 ) ¥ Lz, SIEEMIIERIC
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2.10 The Interesting Accident (Slide 10)

( ™

The Interesting Accident

e We inspected the code in the interpreter
e The implementation of lambda closures and of alpha actors was the same

e The implementation of function calls and of message send was the same

* We decided that actors and function closures must be the same thing!

But there were not just two accidents. There was another accidents. The third accident
was the interesting accident. We made a Lisp interpreter, which supported functions and
actors. And we could call functions with arguments and send messages to actors. Then we
looked at the way actors were implemented in this interpreter and we were very astonished.
We noticed that the implementation of lambda closures and the implementation of alpha
actors were the same code. We noticed that function calls and message sending were imple-
mented by the same code. SUGOIDESUNE. We decided actors and function closures must
be the same thing. This had very profound consequences, because we realized this meant
that actors could be expressed in lambda calculus. This really wasn’t an accident, but it felt
like an accident. Sussman and I realized that lexically scoped Lisp is the same as lambda,
calculus.

This was in 1975. Immediately, we started to read papers about lambda calculus! In
particular, we went back to the paper by Alonzo Church, which was written in 1941. And
we noticed, in his paper,a simulation of pairs very much like cons cells as actors. I don’t think
Church understood it to be message passing but it was still interesting to find something
like cons cells in a paper from 1941.

Four years after that, in 1979, I got married. My wife and I were both students at MIT.
In fact, we were both in Sussman’s laboratory. About 6 months after we were married, my

wife received a letter from her mother. The letter contained much news about relatives. She
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mentioned my wife’s grandfather Herbert Taylor and uncle Sam Church. The letter also
said, “I just received some mail from cousin Alonzo. He used to be at Princeton.” My wife
gave to me to read. Isaid “Barbara, how many persons named Alonzo Church used to be in
Princeton but are now retired ?7” She said, “There could be only one!... Oh, my goodness!”

We two hackers realized that the Alonzo Church was her cousin. It is a very small world.

LD L, REHrE A =3I V7D 20DBRIZT TR, 3I)—20EREB N F L7, FRUEBL L
ANLDTLIz, FOEIR, BET 2792 R 3 hLisp A ¥ 7D FEEND T L7z, BEETI
B TRUE LD, Avb—TV% T2 I~NELIEDNTEET, FLTEDA I TYFIZT
I INEREINIAFERT, BB, KEEBXFL: 45 20—V yDFEREETVITT IS
DERIZ, FA—Da—FK72Zo70TF,

[TZWTTht.]

BA Ty EEEI UV X RE-DDOEERIILE Lz, TRIIKREEELRERTT, &0
IDIZ, SOIENS, TZIRTAITH)F2TATHIETEDL LW Z E2ERT L EEHDON
72Ty, Ihid, EEIIMERTED D EHATL, Ll BROIHICELF LA, Lisp D
FOLF I ANVAI-E U TIREFNER DS DTT, Sussman ERIILF T ANV A3 —7 D Lisp
3. T B FaTALE-THLEVIZLEHERLE L,

FUE, 1975028 TT, $CITLT I F 2T ADRLEHRAIZLE Lz, HR, B0
1% Alonzo Church @1 9 4 1FEDFHTICED T L7z HOBXOTTIX, 727 ELTHIAVAE
WDEIBRRTOYIal—2arBRmloNTVnAEI LIZENS DX TS, ETFNE Ay L— Tk
Bl bREPELHBE LTI EIZEVWETAD, 194 1EDHLTIVAEIVD X ) fifhrdht
TTWABD% B2 5 DIk ANABIRENT & T,

FNDHAER, 19T IOFRICHITHEE LT LIz, FERIZ2AEOMI TOFAETL, FE,
FLEL Sussman DEFZEZEICWE L7z, #EL T6 4 BRICER, R0 s ., BEOZ &457:4
SAEDPNTVSLTFMETHD F L7z, IIHK D Herbert Taylor & B ®D Sam Church (22w
TEHELTNTE L, 2. [WEZD Alonzo PSDFHMEL S o7z, RIZT I VAN WL
72o] EEMPNTVE L7, PRZELIEIFICATTINE L,

W F Lz, [X=F YA M 2w T, 5B L7z Alonzo Church &9 AT AVS
EHYY VWl [7eo72— AN [RATZ 5721 | Alonzo Church 13, IRV E 572D
T9, & HFiTenCtdih,
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2.11 How Can This Be ? (Slide 11)
4 N

How Can This Be ?

¢ Functions are intended to return values

e Actors are intended to send messages

e So what 7

o J

Sussman and I decided that functions and actors are the same. How can this be? Function
are supposed to return values. Actors are not. Instead, they send messages. The correct
answer to the question is “So what?” “NAN-DEMOQ”

You cannot tell whether or not something is an actor or a function, because all it does is

receive arguments and do something.

Sussman EFRMIBIEE T2 Y WRFE—72EToOF L1z, FALZ L WCADTLLE) ?EMIMEE
BT DEEZ LN THET, TIZFEEITIEDYVIEA, DDYVIZTZ &I A vl—T%ED
T, TOEMICHTTAELWEER [2hasE ) Lz, | [HRATH, VW Uewndh ] T,

FIEEZIY  APETEPLEN) LT, IPNET 2 5 ThEIPERTHL %, T2
EITERVDTY,
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2.12 It depends on the Primitives (Slide 12)

4 ™

It depends on the Primitives

e What can an actor or closure do 7

— Invoke another actor or closure
~ Maybe do a conditional test

— Invoke a primitive — this is the basis case
o If all the primitives return values, then every actor/closure will return a value

o If all the primitives send messages, then every actor/closure will send a message

Let us ask what kind of things an actor or closure can do. It can do several things. It can
invoke another actor or closure; this is a recursive operation. Maybe it can do a conditional
test; this is also a recursive case: the “then” part or the “else” part does something else. Or
it can invoke some kind of primitive in the language. This is the basis case for induction.
But what Sussman and I discovered by accident is if the primitives in the language return
values, then every actor or closure would return a value. If all the primitives send messages,
then every actor or closure will send messages.

So whether something behaves as an actor or a closure depends on the primitives that it

uses. Whether a language is pure functions or pure actors depends on its primitives.

T, HANNIITO—VXPREALILETEDLPEZTAELL I, WDDPDTENHYE
T TFMOT IR0 -V X RIFUHE TS, BRINIT 2o TP TVETA, TEASRMN
FAFSBTEATLE ). INOHRBNLEELH Y 9, then T 52T else HAMHFIDOZ &
FLTHVWTT, HAWViE, SFEICHESNT ) IF 47 2RRT I b TEE T, Motk
BERbr—ATT, LAL Sussman EFUIEIR, b LEFEFROT I IT A TWMELZET L, ¢
RCOT 75 HD\dlabels 70—V v bEERTI LR LEL, BLTRTDT Y IT 4
THRAY =D hkELLL, TRTOTIIRIU—=V v b Ay =T %ELDTTY,

s, T28Rru—-Yx b LTHDEIDDEVIDE, HTwET Y IF 4TI T 5
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2.13 Initial Report on Scheme (Slide 13)

( ™

Initial Report on Scheme

e A very simple language

— Function constructor lambda
— Fixpoint operator labels

— Conditional if

— Side effect aset

— Continuation accessor catch
— Function application

— Variables

— Some primitive Lisp data types (lists, numbers)

Shortly thereafter, Sussman and I wrote an initial report on Scheme. This was in December
1975. There was a function constructor named lambda; as we have seen, it is also an actor
constructor. We added fixed point operator, labels; this was like the label in Lisp 1.5.
In modern programming languages, it is usually called letrec. We had one conditional
operator, if. We could have put cond instead of if, but we thought if was simpler.

We had one side effect called aset, sort of like setq. We put in a way to get the implicit
function continuation, called catch. Catch was a special form; in modern versions of Scheme
it is usually called callcc. Function application gives arguments to functions. And of cource
you can refer to variables. There were some primitive Lisp data types: lists, numbers, and
others. And that’s about all there was in the first Scheme. We tried very hard to include only
one kind of each thing, because we wanted to keep the language very small, for educational

purpose rather than for development.

ZDH L Sussman & Rl Scheme [T ARWDOL K- 2EEXT L7, 197 51280
ZLTY, lambda E VIRV AL 782 BEFE L. RCEALI 0. 2T 28 a2 R
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2.14 Lambda:The Ultimate Imperative (Slide 14)

( ™\
Lambda:
The Ultimate Imperative

e Paper on modelling control structures
o Translated many existing ideas into Scheme to show how simple it was

¢ Drw ideas fromPeter Landin and John Reynolds, among others

Sussuman and I then tried to use this small language to explain control structures all
over again. Carl Hewitt had written a paper about actors called Viewing Control Structures
as Patterns Passing Messages. It was 1974 or 1975. Hewitt’s paper explained iterations,
recursions, loops, and all kinds of complicated control structures in terms of actors and
messages. Sussman and I were, with Scheme, trying to explain Carl Hewitt’s work in a
simpler way.

So we wrote a paper called Lambda: The Ultimate Imperative in which we tried to explain
control structures in terms of lambda calculus. This was not a new idea. Peter Landin and
John Reynolds tried to explain Algol in terms of lambda calculus. The whole theoretical
area of denotation semantics was emerging at that time. In effect, Sussman and I were

repeating these ideas in our own framework.

Our new contribution was that the models of control structure in lambda caliculus could
be executed. We could take all the theoretical lambda calculus models and translate them
into Lisp syntax and run them. So, other people at MIT found it very useful.

Sussman &AL, KICZD/NE L FEE o THEBELA LV ILDE, I —ESHL LS
& LE L7, Carl Hewitt 13, 72 Z ISR 55302 #H& £ L7z, [Viewing Control Structures as
Patterns of Passing Messages | T3, 7 44E47 54ED T & TF, Hewitt D li, #0EL. B
Jo. V=T, ZTLTHOWLEBHEOMMLHEMEEEZ T 75 L Av 2 —VICL o THBLE L,
Sussman &FAlL, Scheme % ff > T, Carl Hewitt DR > TWAI %I VTV AHETHEAL LD
ELEL7,
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2.15 Lambda: The Ultimate Declarative (Slide 15)

( ™
Lambda:
The Ultimate Declarative

e Lambda as a renaming construct

Function call is GOTO (with arguments)

More on similarity of actors and closures

e Object-oriented programming in Lisp

Suggestions for writing good compilers

In our next paper, Lambda: The Ultimate Declarative, we looked at the declarative side
of lambda.

In this paper, we emphasized two points. First, the main purpose of lambda is to give
names to the arguments that arrive in a message. The other thing was that function call
doesn’t necessarily return a value. If a function call does not have to return a value, it
doesn’t have to return at all. We can understand this because a function is the same as an

actor, and a call is the same as sending a message.

This suggested that function call can be thought of as goto, but it also passes arguments.
This idea tells us that we can compile the function call as gotos. In particular, function
call doesn’t have to push a return address on the stack; you push a return address only
if you want to come back. Or, to think differently about this, the return address is really
a continuation. If you don’t want to make a new continuation, you don’t need to push a
return address.

We realized, if you design a compiler around the principle, tail recursion is automatic.
And is the compiler guarantees proper tail recursion, then vou could do object-oriented

programming in Lisp.
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2.16 RABBIT: A Compiler for Scheme (Slide 16)

4 I

RABBIT:
A Compiler for Scheme

e Steele’s master’s thesis

How lambda calculus supports code transformations for optimizing compilers

Written in Scheme

Very slow compiling itself!

Following these ideas, I actually built a Scheme compiler as part of my master’s thesis. In
this, I studied the idea of compiling code as we have discussed. I also studied how you can
use lambda calculus to describe compiler optimization. At that time, the 1970s, program
transformation at the source level was still a new idea. I realized program transformations
described as denotational semantics could be used directly in a compiler.

At that time, I strongly was influenced by the saying, “A programming language is no
good if its compiler cannot be written in the language.” So, I started to write compiler
in Scheme. I found another problem in bootstrapping. To get the compiler to compile
itself, I had to run interpreter. Worse yet, as I made improvements, it needed even longer
compile time to compile itself. So I got a computer terminal and took it home with me.
Every night, I started the compiler. When I woke up, usually it was done. I had to compile
about one hundred times in three months. Once I was able to get the compiler working,
then the compiled compiler could compile the compiler and it ran much faster. But several
times I changed the compiler and introduced a bug. Then I had to I re-bootstrap using the
interpreter. This was very tedious work!

Let me show you a few examples of compiler optimization based on the lambda calculus.

INLDT AT TINE> T, FIIBF OB IDO—Eh& LT, Scheme I 2734 5 % EREIT/ED
L2, ZOPT, MIFSFECHLTELLI I IR a v VDT AFTIZOVWT T LhE L7z,
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2.17 Example: OR (Slide 17)

e N\
Example: OR

(or x y)
(if x x y)
((lambda (p)
(if p p ¥))
x)
((lambda (p q)

(if p p (@)

X

(lambda () y))

\- J

The first example is an or expression, (or x y). The meaning is as in Lisp: if x is true,
then return true and don’t evaluate y; but if x is false, then evaluate y and return that
value. So here is a possible translation, (if x x y). But you don’t want to do this as a
macro, because x may be a complicated expression. Maybe there is a side effect; you don’t
want to do it twice.

So what you want to do is evaluate x once, look at the value, and, if it is true, return
that. Don’t execute it again. Many compilers had this idea already; the C compiler had
this idea already. But until that time, no compiler could handle it as a source to source
transformation. In Rabbit, we did try this extension: we evaluate x and bind the value to
the variable p then test that. Here is the source code: we expressly evaluate x only once. But
there is another problem. What if the variable p appears in y? Then the source expression
y will refer to the wrong variable p. The usual trick at that time was to use a generated
variable name, a “gensym.” But Sussman and I did not find it satisfactory with this hack.
Such magic should be outside the language. We wanted to do the source transformation
completely within the language using lambda variable.

We discovered we can do this by using more lambda expressions. In this lambda expres-
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sion, we bind the variable x to the variable p, and we also bind the variable q to another
lambda expression, which then calls and execute y.

In Algol literature, this lambda expression is called a “thunk.” By the way, “thunk”
sounds very silly in English.

The meaning of this is that this lambda expression (the outer one) simply names two
things. It names the variable x and it names this thunk. Now, using the names p and q,
we say, if p is true then p, otherwise call . We can think that this function call is actually

changed to a goto to the thunk, which is in the correct scope.
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2.18 Example: IF (Slide 18)

4 ™
Example: IF

(if (if abc) de)

(if a (if b d e)
(if c d e))

((lambda (x y)
(if a (if b (x) (y))
(Gf ¢ (x) GNN
(lambda () d)
(lambda () e))

As the second example, consider this if expression. Suppose we have a nested if expression.
It was recently discovered that a good source to source transformation is to change it to
something like that.

I first found this transformation in a catalog at UC Irvine. The Irvine Program Trans-
formation Catalog was the first attempt to systematically list transformations as source-to-
source level transformations.

One aspect of this transformation is not satisfactory, Because the code for d and e is
duplicated. We can use this idea: you need only one copy of d and e. And after going
down this decision tree, you can go to the correct piece of code. Using Scheme, the Rabbit
compiler expressed it in this way. x and y name two thunks for d and e. So, the code for d
appears only once, and code for e appears only once. Then, actually, this executable code
is the decision tree on a, b, and c. After making this decision, then a direct goto is made
to the thunk for d or the thunk for e. And the Rabbit compiler compiled such code exactly
that way. These function calls turned into branch instructions. So the interesting thing is,
these lambda variables (x and y) do not stand for data; x and y are more like statement
labels. So, Scheme is able to explain names of variables and names of statement labels in

one mecachims.
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2.19 Revised Report on Scheme (Slide 19)

4 ™

Revised Report on Scheme

e Updated definition of Scheme

— Dynamic binding
— Built-in macros: let, cond, do, ...

— User-defined macros

e Tribute to Revised Report on Algol 60

Sussman and I wrote several more papers about Scheme. The next was the “Revised
Report on Scheme.” This was a slightly updated definition of Scheme. The main new
feature was to add dynamic binding, so each variable could be lexical or dynamic—the

programmer could choose.

Also, by this time, other users were using Scheme, basically for writing code. So, we
added a few more things to make Scheme more convenient. We added let, cond, and do
as macros, also user-defined macros. We called this paper the Revised Report on Scheme
because we want to pay honor to Algol 60. We thought the Revised Report on Algol 60 was

a very clearly written paper. We tried very hard to write clearly at that level.

Sussman & FA13 Scheme ICFI L THICW L OQDRA LA EXF L7, kDH I [Revised Report
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2.20 The Art of the Interpreter (Slide 20)

e I
The Art of the Interpreter

e Monograph on small Lisp interpreters
o Illustrates how small variations affect the behavior of the interpreted language

e Exploration of side effects and state

Next, we wrote another paper, called The Art of Interpreter. We wanted to explain to

other people how you can experiment with programming language design.

While Sussman and I were designing Scheme and writing other papers like Lambda: The
Ultimate Declarative, we wrote many small interpreters. Sometimes we wrote ten different
interpreters in a week. It’s very easy when you are modifying an old interpreter and making
a new one, and the language is small. We wrote interpreters to illustrate how small changes

in an interpreter can make a big difference in the programming language.

We also explained side effects and states. The best definition of side effect came from
Dan Weinreb. We were trying to understand the meaning of “two objects are the same.”
Sussman and I read many books by great philosophers and tried to understand this idea.
But, Dan Weinreb said, “Two coins are the same if one is on the railroad track and the
other gets squashed.” It meant that if you have two objects and change one and it always
affects the other one, then they are the same.
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2.21 Scheme Spreads Elsewhere (Slide 21)

\
Scheme Spreads Elsewhere
e Indiana University
e Yale
— T compiler
— ORBIT compiler
o Texas Instruments (PC Scheme)
e Oregon (MacScheme)
N J

About this time, Scheme became much more popular. Sussman and I exchanged papers
with workers at Indiana university in the 1970s, Daniel Friedman and David Wise. Indiana
and Yale did work on Scheme. Yale produced two very good Scheme compilers. In the early
1980s, commercial versions of Scheme appeared. Texas Instruments produced TI Scheme,
with a very low cost, under $100. Workers in Oregon including Will Clinger produced
MacScheme. At about this time, Common Lisp efforts started.
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2.22 Scheme Affects Common Lisp (Slide 22)

- ™

Scheme Affects Common Lisp

e NIL dialect planned for VAX, S-1
e Had lexical scoping

e NIL was one basis for Common Lisp

Scheme affected the design of Common Lisp. There was a strange dialect called NIL—I
was involved with starting the project to some extent. It was designed to build a Lisp for
the Digital VAX and the Stanford S-1. NIL was very much like MacLisp, but it had lexical
scoping. NIL then become an important dialect and joined Common Lisp. That’s why

Common Lisp has lexical scoping.

Scheme iX Common Lisp DFXEHIFHEZ 52 £ L7z NIL &2\ )5 ko EHFWRZRID Lisp 2%
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2.23 More Reports on Scheme (Slide 23)

4 N

More Reports on Scheme (by a committee)

e Revised Revised Report
o Revised Revised Revised Report

Revised Revised Revised Revised Report

— A version of this became IEEE Scheme standard

o The Revised® Report is still in progress

Because so many people were involved with Scheme, a standardization committee was
formed. The committee started trying to improve Scheme and wrote series of reports. They
made the Revised Revised Report, the Revised Revised Revised Report, the Revised Revised
Revised Revised Report, and now they are working on the Revised Revised Revised Revised
Revised Report.

They revised the report four times. It became the IEEE Scheme standard.

The IEEE Scheme standard is five years old now. There was a question os whether we
should affirm or revise. We affirmed. It looks like the same language that the Scheme

community provided for five years is still good.
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2.24 Scheme Community Is Very Friendly (Slide 24)

e R

Scheme Community Is Very Friendly

e Operates by consensus
e If someone says “no” to a feature, then it does not go into the language

e Compare this to Common Lisp committee

The Scheme community is very friendly. They operate by consensus agreement mainly.
The general rule of the committee when working on the revised report was, “If a change is
proposed, and if someone says no, it is not included.” Put in another way: everyone must
agree on a change. This tends to keep language small.

Maybe you can compare this with Common Lisp community. Maybe the Common Lisp
community is not friendly. It does not operate by consensus. I have chaired the committee
for five years. I have moderated arguments. This was the most difficult job of my life! Some
people think that in Common Lisp, the rule was, “If a change is proposed, and someone
says yes, the feature goes into the language!” So Common Lisp becomes big.

Maybe this comparion is not fair. I think the purpose of Common Lisp is very different.
Common Lisp was intended to be an industrial programming language. Keeping Common
Lisp small for educational purposes was not a goal. So, Common Lisp became a very, very

big subroutine package. I think it is easier to use, and harder to teach.
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2.25 Contributions of Scheme (Slide 25)

4 I

Contributions of Scheme

e A small language

e Almost no new ideas

e Showing that a few old ideas explain a lot
e Easy to implement

e Bridge between theory (lambda calculus, denotational semantics) and practice (prac-
tical programming language)

I would like to modestly suggest these are the contributions of Scheme. It is very small
but still a useful language. Actually, there are almost no new ideas. Instead, by accident, it
showed that a few old ideas can explain a lot, and especially that a programming language
based on lambda calculus is useful. Because Scheme is small, it is easy to implement, and
it provides the bridge between theory and practice. The way of theoretical lambda calculus

and denotational semantics can be used for writing practical compilers.
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2.26 The Future of Scheme (Slide 26)

4 ™
The Future of Scheme

e IEEE standard reaffirmed (5 years) with no changes

o Maybe add macros and modules ?

Used a sextension language for CAD

Actually pretty good as it is

Transfer of technology to ML, Haskell ?

Here is my guess about future of Scheme. As I said, the IEEE standard is firm and has
not changed for five years. The extra changes the users suggested were macros and some
kind of module systems. Unfortunately, after several years, there is not good agreement for

these features.

There is pretty general agreement that macros are a very good thing. There are several

design proposals for macros. The same thing is true for modules.

My guess is the Scheme will probably stay pretty much as it is now. That may be okay;
it is widely used in education, in both high schools and universities. It is also found in
industrial applications, for example CAD, for extension languages; just as the Emacs editor
has Emacs lisp as an extension language, some CAD programs use Scheme. So, overall,
Scheme may be pretty good and seems no needs to change.

In the last few years, I have seen a transfer of technology from Scheme to other functional
languages. The programming languages ML and Haskell are like Scheme in many ways, but
with Algol-like syntax. In some ways, the kind of programming language innovation that
used to be done in the Scheme community, I now see done by ML and Haskell.

I am now not sure whether Scheme is frozen or whether innovation from other areas will

come back to Scheme. For example, maybe Scheme will eventually have a module system
based on the ML design.
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As always, the future is a little uncertain, but I think Scheme for now is very useful version

of Lisp.
I think this is the end of my presentation.
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Chapter 3
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and which have key milestone relation with the background of the Scheme talk, gathered
by Masayuki Ida.
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